

Silicon Photonics Opportunity, applications & Recent Results

Dr. Mario Paniccia Intel Fellow Director, Photonics Technology Lab Intel Corporation

www.intel.com/go/sp

Purdue University Oct 5 2007

Agenda

- Motivation & applications
- History & progress
- Intel's Research Program
- Future work
- Summary

Photonics Applications

Wireless RF

PC, Server Interconnects

Health

Chemical Analysis

Enterprise Communication

Environmental Monitoring

Photonics could impact all of these. But today costs are prohibitive.

Processor History

Intel co-founder G. Moore predicted doubling of transistors approximately every 2 years (*Electronic Magazine, 1965*)

Electronics: Economics of Moore's Law

SCALING + WAFER SIZE + HIGH VOLUME = LOWER COST

Integration & increased functionality

5

ean ahead

Tera-leap to Parallelism:

Future Physical I/O for a Tera-scale Servers

Integrated Tb/s Optical Chip?

Moving to Interconnects

Photonics Evolution

Silicon Photonics

- Motivation & applications
- History & progress
- Intel's Research Program
- Future work
- Summary

The Opportunity of Silicon Photonics

- Enormous (\$ billions) CMOS infrastructure, process learning, and capacity
 - Draft continued investment in Moore's law
- Potential to integrate multiple optical devices
- Micromachining could provide smart packaging
- Potential to converge computing & communications

To benefit from this optical wafers must run alongside existing product.

Silicon as an Optical Material

- Transparent > ~1.1 μm
- ✓ High index
- CMOS Compatible
- ✓Low cost material

8 Low light emission efficiency

8 No electro-optical effect

8 No detection in 1.3-1.6 μm

Silicon traditionally NOT optical material of choice

Si Photonics Recent Progress

*This is not exhaustive

		Paman 1 Conv	Polarization Indep. Rings _{Surrey}	QCSE in Si Stanford Stim-Emission Brown	Hybrid Silicon Laser Intel - UCSB	40Gb/s Raman
		UCLA	UCLA	CW Raman Laser	Broadband Amplification	Amp & λ Conv. Ring Laser
		Modeled GHz PIN Modulator Surrey, Naples	>GHz MOS Modulator Intel	10Gb/s Modulator Intel, Luxtera 1.5Gb/s Ring Mod.	E-O Effect Strained-Si 4	Intel 0Gb/s Modulator
Pioneering work by	Integrated APD+TIA _{UT}	DGADC Surrey	30GHz Si-Ge Photodetector IBM	Cornell 39GHz Si-Ge Photodetector ¹	DTU OGb/s SiGe PIN Commorcial	Intel 40Gb/s SiGe Wave Guide PIN
Dr. Richard Sorei early 1980's)	Inverted Taper NTT, Cornel	PBG WG <25dB/cm _{IBM}	PBG WG <7dB/cm IBM, FESTA, NTT	Univ: Stuttgart PBG WG <3db/cm NTT	Quality Intel	Intel
	2002	2003	2004	2005	2006	2007
Device performance making significant advances						
					13	Leap ahead

Silicon Photonics

- Motivation & applications
- History & progress
- Intel's Research Program
- Future Work
- Summary

Intel's Silicon Photonics Research

First: Innovate to prove silicon is a viable optical material

15

Intel Leap ahead

Intel's Silicon Photonics Research

Next: Focus on integration

16

Integration Vision ECL Time • Modulator Multiple Filter Channels CMOS ircuitry Passive Integrated in Silicon Alignment Photodetectors DEMUX First: Prove Silicon good optical material Photodetector **FUTURE** Aligr Monolithic? Light Source **Guide Light** Modulation MUX Low Cost Assembly Intelligence Photo-CHOS Next Integration: silicon devices into hybrid modules **Increasing silicon** integration over time ia ahead" 17

Building Block Research

Guiding Light with Si Waveguides

Ex: Rib waveguide

- Proven area for silicon
- High index = small structures
 - Strip and Photonic crystals for further scaling
- Splitters, couplers, gratings, AWGs, MMIs have all been demonstrated

Continue to reduce size while maintaining performance

Options for Integrating Light Sources

Hybrid Silicon Laser Collaboration with UCSB

•The Indium Phosphide emits the light into the silicon waveguide

• The silicon acts as laser cavity:

- Silicon waveguide routes the light
- End Facets or gratings are reflectors/mirrors
- Light bounces back and forth and gets amplified by InP based material
- Laser performance determined by Silicon waveguide

No alignment needed 10's if not 100's of lasers with ONE bond

Hybrid Laser Process

1) A waveguide is etched in silicon

2) The Indium phosphide is processed to make it a good light emitter

3) Both materials are exposed to the oxygen plasma to form the "glass-glue"

4) The two materials are bonded together under low heat

Hybrid Laser Process

5) The Indium phosphide is etched and electrical contacts are added

6) Photons are emitted from the Indium Phosphide when a voltage is applied

7) The light is coupled into the silicon waveguide which forms the laser cavity. Laser light emanates from the device.

Hybrid Laser Structure

SEM (Scanning Electron Microscope) Photograph

Silicon Hybrid Laser

7 lasers outputting simultaneously

Modulation

- Direct or External modulation
- External used for 10G at ~12km+

Intel's Second Generation: Silicon Modulator

SEM picture of p-n phase shifter

-Based on traveling wave design -Optimized optical & electrical RF

Recent Results: 40Gb/s Data Transmission

40Gb/s Data Transmission

Optical 3 dB roll off ~30 GHz

Photodetection

- Silicon does not absorb IR well
- Using SiGe to extend to 1.3µm+
- Must overcome lattice mismatch

Misfit dislocations typically create threading dislocations which degrade device performance - dark current (I_{dk}) goes up.

Must simultaneously achieve required speed, responsivity, & dark current.

Waveguide Photodetector Design

Top View

SEM Cross-Section

SEM Cross-Section

Experimental Results: 40Gb/s Presented Sept 20th: Group IV conference Tokyo Japan

31 GHz Optical Bandwidth

40 Gb/s Data transmission

95% efficient (up to $\lambda \sim 1.56$ um) < 200nA of dark current

CMOS Intelligence

- Electronics are needed to control photonics – no optical logic
 - Transimpedance & Limiting Amplifiers fo photodetection
 - Drivers for lasers/modulators
 - Also Clock Data Recovery, Serializers/Deserializers, etc.

Use hybrid attached CMOS electronics. Explore monolithic integration over time

Integration: Hybrid?

Photonics and electronics processed separately

10 Gbps electronics could use < 0.13µm while optics may use older gen. process. Attachment via bumps or wirebonds.

Integration of passive and active silicon devices reduces assembly & cost.

External III-Vs: require coupling and alignment (vertical & horizontal) or direct wafer bonding to waveguides.

Both monolithic and hybrid chips will need to couple light to the outside world.

Example hybrid chip

Hybrid will offer the best price-performance near term

Integration: Monolithic?

Photonics and electronics processed together on a single wafer

•Motivations:

- Performance, e.g. a Photodetector with a Trans-impedance amp
- Reduced form factor
- Cost?

Example monolithic chip

•But many challenges for achieving high yield: Tighter thermal budgets, topology, metrology, complexity, etc.

> Yield issues make monolithic a longer term proposition

Silicon Photonics

- Motivation & applications
- History & progress
- Intel's Research Program
- Future Work
- Summary

Integrating into a Tera-scale System

This transmitter would be combined with a receiver

Which could then be built into an integrated, silicon photonic chip!!

Тх

Rx

Integrating into a Tera-scale System

This integrated silicon photonic chip could then be integrated into computer boards

And this board could be integrated into a Terascale system

Summary

- Long term, convergence opportunities will be in silicon
- Silicon photonic device performance advancing at an accelerated pace.
 - Need to continue to push performance (i.e. 40G, 100G...)
- Next phase of challenges will be with integration.
- For interconnects, need to optimize electronics & photonics
 - Packaging, power, signaling, and cost will be key

If successful volume economics could allow silicon photonics to impact many areas from communications to bio to medicine

Silicon Photonics' Future

